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J.  Phys. A: Math. Gen. 15 (1982) 2327-2335. Printed in Great Britain 

Orientations of reflection-rotation groups 

M F Reid and P H Butler 
Physics Department, University of Canterbury, Christchurch, New Zealand 

Received 9 December 1981 

Abstract. We extend the work of a previous paper in which we showed that some of the 
phase choices in the 3jm factors of certain point group embeddings affect the orientation 
of the symmetry axes. The occurrence of such choices is unpredictable and their effect 
is sometimes subtle but once a set of 3jm factors has been calculated we can determine 
the orientations of the symmetry axes and mirror planes and investigate how these 
orientations vary with the phase choices. The properties of the reflection-rotation groups 
are obtained from the isomorphic pure rotation groups but care is necessary in interpreting 
the effects of the corresponding operations of, for example, D3 and C3”. 

1. Introduction 

It has been shown that the j symbols and jm factors of arbitrary compact groups may 
be calculated by a building up method which uses only character theory results (Butler 
and Wybourne 1976a). The building up method has been used to calculate j and jm 
symbols of finite groups (Butler and Wybourne 1976b, Donini 1979, pp 123-77, 
Butler and Reid 1979, Prasad and Bharathi 1980, Butler 1981) and continuous groups 
(Butler 1976, Butler et al 1978, 1979, Bickerstaff et a1 1982). In a previous paper 
(Reid and Butler 1980, to be referred to as I) we showed that for certain pure rotation 
point group-subgroup pairs one of the phase freedoms in the 3jm factors corresponds 
to a freedom in the orientation of the symmetry axes. In this paper we shall extend 
these results, both to point groups containing inversions or reflections and also to 
continuous groups. 

Several interesting results and problems have emerged from this work. There 
appears to be no way to determine when orientation choices occur, short of actually 
calculating 3jm factors. In addition, there are cases where the groups have the same 
axes and mirror planes but do not have the same ‘orientation’, in the sense of having 
unity primitive transformation coefficients. 

Our discussion of groups containing reflections or inversions is related to the work 
of Altmann and Herzig (1981). The properties of rotation-reflection and rotation- 
inversion groups may be obtained from the corresponding pure rotation groups but 
care is necessary in interpreting the effects of corresponding operations. 

2. Orientation phase choices 

Many phase and multiplicity separation choices must be made in the calculation of 
6j  symbols and 3jm factors. For some, but not all, group-subgroup pairs an orientation 
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phase choice arises. This phase choice is distinguished from other 3jm choices in that 
a transformation between two sets of 3jm factors with different orientation choices 
requires primitive transformation factors which are not unity (see I, equation (3.2)). 
There appears to be no way of ascertaining the existence of such a choice without 
actually calculating the 3jm factors. 

A distinction exists between the two sorts of orientation choice discussed in I: the 
‘continuous’ (e.g. D33C3)  and ‘double root’ (e.g. T 3 D 2 )  choices. The former are 
easily seen to be a freedom of the Racah-Wigner algebra, a result of Schur’s lemmas. 
The latter are not, and are therefore more difficult to deal with. 

Butler (1981) and Bickerstaff and Wybourne (1981) have given a detailed account 
of the phase freedoms of the Racah-Wigner algebra. For our purposes we divide the 
phase and multiplicity freedoms into coupling, branching and (continuous) orientation 
freedoms. The coupling freedoms occur in the calculation of 6 j  symbols. During the 
6 j  calculation a set of basis triads emerges (essentially one per irrep). All other triads 
are fixed relative to this basis set by choosing the phases (and magnitudes in the case 
of multiplicity) of a set of basis 6 j  symbols. Once all phases are chosen, all other 6 j  
follow recursively. The 3jm factors are calculated after the 6 j  of the group and the 
6 j  of the subgroup. Again, once all phase and multiplicity choices are made, all other 
3jm follow recursively. (Note that not one of our transformation coefficient calcula- 
tions (see I) uses 3jm factors which contain coupling phase information.) A branching 
choice occurs for each non-primitive ket, and this is well understood, but in some 
cases an extra phase choice must be made, one we’are calling the continuous orientation 
choice. The occurrence of a complex primitive irrep in the group or subgroup seems 
to be a necessary condition for the appearance of such a choice. It is not a sufficient 
condition however. SOz has a complex primitive but there is no orientation choice 
for SO3 3 S02. (It is clear from equation (58)  of Butler (1976) that all 3jm choices 
for SO3 3 SO2 are ket choices.) 

Bickerstaff and Wybourne (1981) have argued that when one makes a continuous 
orientation choice one is fixing a relationship between basis triads (they call them 
‘product antecedents’) of the group and subgroup. Because of this restriction a 
transformation between sets of 3jm factors with different orientation choices requires 
non-unity primitive transformation coefficients. 

A continuous orientation choice occurs in the point group embeddings D, 3 C,, 
Dodd 3 C2, T 3 C3 and C,, 3 C, (see table 1). However, the most striking example of 
this sort of choice occurs in the continuous group branching SU3 >SO3 (Bickerstaff 
et a1 1982). If the phase of the 3jm factor 

is changed to 

1 1 1  1 1 1  
(1 1 l)’=e’R(l 1 1) 

then from 

( 1 1  1 ’  1) =(11j11)’(11~11)‘(11111)’(: ; t). 



Orientations of reflection-rotation groups 2329 

Table 1. Occurrence of orientation phase choices in subgroup chains of SO3. 

No orientation choice, SO3 I> SO2, SO3 3 D,, SO3 3 K, SO3 3 0, 
no complex values necessary 

No orientation choice, 

D, 3 C,, D, 3 D,, D,, 3 D,, 0 3 D4,O 3 T. 

K 3 D3. 
complex values necessary 

Continuous orientation choice, 
no complex values necessary 

Double root orientation choice, 
complex values necessary 

T 3 C3, D, 2 C,, Dodd 3 Cz. C,, 3 C,. 

K 3 T, K 3 Dg, 0 3 D3, T 3 Dz. 

(Butler 1975, equation (11.6)) one obtains (since 1*(SU3) = 12(SU3)) 

( I I ~ I I ) ’ =  e-ie’3 = (1211121)* (2.4) 
entirely analogous to the D3 =I C3 example discussed in I. This can be explained by 
the basis triad concept. In choosing the phase of the 3jm factor we are relating the 
basis triad (111) of SU3 to the basis triad (111) of SO3 via the kets \l(SU3)l(S03)). 
It is important to realise that we do not have a branching freedom for this 3jm because 
the ket 11(SU3)1(S03)) is primitive. Orientation-type choices also occurred in the 
SUS =I SU2 x SU3 and SUS 3 U1 X SU2 branchings considered in Bickerstaff et al(1982). 

The ‘double root’ choices are not so straightforward. In these cases there is no 
Schur’s lemma freedom left in the Racah-Wigner algebra but also no equations which 
fix the 3jm completely. Instead a double root occurs for one primitive 3jm, both 
solutions leading to a consistent set of 3jm factors. In I we showed that the two roots 
in the T =) DZ calculation correspond to two orientations of a tetrahedron, 7r/2 apart. 
In that case the two tetrahedra had the same three-fold axes, though the character 
of a three-fold rotation about xyz was different for the two tetrahedra, equivalent to 
switching C3 and C;’ in the character table. This may be determined by the methods 
discussed in § 5 of the present paper. In figure 2 of I we see that in one case xyz is 
through a vertex and in the other case through a face of the tetrahedron. This 
correspondence of operations is not a general property of double root choices. For 
example, the two roots for 0 =I D3 correspond to the two orientations shown in figure 
1. In this case the two cubes have different four-fold axes, and therefore different 
irrep matrices, but the character table is the same. For maximal embeddings of rotation 
point groups a double root occurs only for T 3 DZ, 0 3 D3, K =I D5 and K 2 T. We 
know of no continuous group examples. 

How the double root choice is related to labelling choices in the character tables 
of group and subgroup is unknown. Observe that while there are two distinct orienta- 
tions of an icosahedron about a D3 triangle (similar to 0 =) D3), and further that while 
certain K 3 D3 3jm are complex and appear at first sight to be a double root occurrence, 
no such choice exists as only one value satisfies the equations. 

We have previously reported (Gruber and Millman 1980, pp 99-104) that the 
complex numbers in the T =I DZ calculation cannot be removed by changing the 3jm 
complex conjugation symmetries. (Damhus (1981) showed that it is possible to obtain 
real coefficients for the T 2 C 3  and the (non-maximal) T 3 C z  embedding.) The 3jm 
for 0 3 D 3 ,  K 3 D s  and K I T  also contain essentially complex double roots. The 
K 13 D3 embedding is the only point group case where complex 3jm are necessary, 
but no double root, and hence no orientation choice, occurs (see table 1). 
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i 

Figure 1. Orientations of 0 3 D3. The two orientations of the cube about a D3 triangle 
are related by a v/3 rotation about the z axis. Though the cube has been drawn as fixed 
in the diagram it is the D3 triangle which should be considered to be fixed since the 
D3 13 C3 orientation choice fixes the two-fold axes of D3 and the 0 2 D3 choice fixes the 
orientation of the other axes of 0 relative to these. 

3. Transformation of odd-parity kets to the JM basis 

In I we showed how to transform from pure rotation point group bases of so3 to the 
standard angular momentum basis SO3 3 SOz (the JM basis). Butler (1981) contains 
a complete set of such tables. The transformations between bases of O3 may be easily 
determined from these pure rotation coefficients. 

Of the thirty two point groups eleven are pure rotation groups. The rest are either 
direct products of a rotation group and the two element inversion group Ci (e.g. o h ,  

D4h) or contain reflections but are isomorphic to a pure rotation group (e.g. Td - 0, 
C4"-D4). We denote the rotation-inversion groups Gi (=Cix G). Note that 0 3  = 
Ci x SO3. The jm symbols for Gi =) Hi may be obtained directly from the tables for 
G x H .  

For the rotation-reflection groups the j and jm symbols are just those of the pure 
rotation groups to which they are isomorphic. The only non-trivial cases are for a 
rotation-inversion group Gi containing a rotation-reflection group 6, isomorphic to 
G. The branching rules are 

where 

I = A X E  

and E is determined by 

O-(Gi) -* ~ ( 6 )  

(3.2) 

(3.3) 
The non-zero 3jm factors containing only even-parity irreps are unity and the rest 

are calculated by the methods of P 4 of Butler and Ford (1979) and are tabulated by 
Butler (1981). 
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To calculate transformation coefficients between an arbitrary point group basis of 
O3 and the JM basis we note that the even-parity coefficients are the same as for the 
corresponding pure rotation chain. The pseudoscalar transformation coefficient 
(0-(03)O(S02)~O-(03)0-(Gi)~(~)e (H)) is real or imaginary, with a free sign, depending 
on the 2jm factor(O-O-&e)T, since 

(3.4) 

\ e l  

and (:-) = +l. 
(Butler (1981) overlooked this point and implies that the pseudoscalar coefficients 

are real. This was pointed out to us by Piepho (1981). In the 3jm tables of Butler 
(1981) the pseudoscalar 2jm have often been chosen -1 (e.g. (t) = -1 for all D, 3 C,,), 
in order to have as many real 3jm factors as possible, see table 1.) 

The odd-parity transformation coefficients are calculated by coupling the pseudo- 
scalar kets to the even-parity kets, using 3jm factors (or coupling coefficients) to give: 

(3.5) 

Changing the sign of the pseudoscalar transformation coefficient has the effect of 
inversion, since it changes the sign of all odd-parity transformation coefficients. It is 
another choice of relative orientation of the group schemes, in addition to the choice 
of even-parity primitive transformation coefficient (I equation (3.2)). This extra choice 
is necessary because the irrep t' (03) is not faithful and therefore does not contain 
all the irreps of O3 in its Kronecker powers. Instead, the irrep 3- = 3' x 0- is faithful. 
However, it is more convenient to attach the 0- kets to the even-parity transformation 
coefficients than to build up the entire set from the 3- transformation coefficients. 

4. Cartesian basis functions 

Transformations to the JM basis of O3 are useful in constructing combinations of 
point group kets which transform as functions of x, y and z. For example, the electric 
dipole operator transforms as 1-(03) and so the standard choice of spherical harmonics, 
namely, 

I1-(o,)o(s02)> = f 1(S02)) = 7 @ ( x  *iy) (4.1) 

can be used to construct combinations of point group kets which transform as various 
polarisations of the electric dipole operator. Cartesian expressions derived from our 
transformation coefficient tables have proved useful to the work of Churcher and 
Stedman (1981a, b) on Raman selection rules and Stedman and Minard (1981) on 
lattice strain, and are central to several discussions in Piepho and Schatz (1982). 
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5. Orientations of rotation-reflection groups 

We can determine the orientation of axes and mirror planes of any selected point 
group-chain by transforming to the JM basis. The effect of rotations on JM kets is 
given by the rotation matrices (Messiah 1961, appendix C). If I is inversion, f& a 
reflection in the x y  plane and rv a reflection in the xz plane, then we have 

Reflections in other planes may be generated by rotating, reflecting and rotating 
back. Note that a reflection is the same as a rotation by 7~ about an axis perpendicular 
to the mirror plane, followed by an inversion. For even-parity kets the inversion has 
no effect. 

One must be careful about which groups are being considered when drawing 
diagrams. For example, our 3jm tables make an orientation choice for D3 3 C3 so 
that the y axis is a two-fold axis (see I, equation (4.11)). The D3 operations will then 
transform the triangle in figure 2 into itself. If we consider instead C3v3C3 the x z  
plane is a mirror plane and so C3" transforms a different triangle into itself (figure 3 ) .  
Altmann and Herzig (1981, figures l ( b )  and 2 and equation (6.1)) make similar 
observations. Note that we do not need to consider odd-parity kets to determine the 
orientation of mirror planes. 

Y 

Figure 2. Orientation of D3. Here the y axis is a two-fold axis. 

Y 

Figure 3. Orientation of C3". Here the xz plane is a mirror plane. 



Orientations of reflection-rotation groups 2333 

6. Characters of representations 

The character of irreps under the symmetry operations may be determined by trans- 
forming to the JM basis and using the rotation matrices and the reflection operators 
discussed in the previous section. Alternatively, we can by-pass the JM basis by 
generating a set of rotated transformation coefficients. We have shown that choosing 
a particular relationship between the primitive transformation coefficients corresponds 
to a rotation of the axes (I equation (3.3)). If the group schemes and phase choices 
are identical then the transformation coefficients are precisely the matrix elements of 
the operation and hence the characters (traces) may be determined directly. This is 
analogous to the usual construction of SO3 3 SOz rotation matrices (Messiah 1961, 
equation (C70)). 

Consider the D3 3 C3 example of I. We can choose 

($(D3) $(C3)I$(D3) $(C,))’= ei”’ = ($-$I$-$)‘ 
corresponding to a rotation of the primed kets by an angle cy about z (this is misprinted 
in I as a/2  at the bottom of p 2893). We then find that 

(6.2) (z 3 3  I 3 3 1  .-) = 3(e-3i42 + e 3 i 4 2 )  

(from I equation (4.13), with the same orientation choice for both kets). For a = 2 ~ / 3  
we have the matrix element, and hence the character, -1, consistent with the D3 
character table of I. Note that a rotation which is not a multiple of 2 ~ / 3  is not allowed 
and the coefficient will become unnormalised if such a rotation is attempted. 

7. Coincidence of groups 

With the above tools for finding axes and mirror planes, we return to a study of the 
orientation questions. In this section we show that coincidence of the axes and mirror 
planes of the group is not sufficient to guarantee that the primitive transformation 
coefficients between two sets of 3jm factors (with different orientation choices or 
symmetrised with respect to different subgroup schemes) can be chosen unity. This 
is immediately apparent in the D3 3 C3 example discussed above. A 7r/3 rotation 
about the z axis brings the two-fold axes into coincidence but, as we showed in I, a 
change in orientation phase equivalent to a rotation which is a multiple of 2 ~ / 3  (i.e. 
a symmetry operation of D3) is necessary if one wants to have unity primitive 
transformation coefficients. 

The situation is even more complex if we wish to consider transformations between 
the bases of a group, symmetrised with respect to different subgroups. In general 
such transformations require non-unity primitive transformation coefficients because 
in general a rotation is needed to bring the axes into coincidence. Obviously the 
transformation from, for example, 0 3 D3 3 C3 to 0 3 D4 3 C4 requires a rather 
complicated rotation because in the first case the z axis is through a corner and in 
the second case a face of the cube. Even when the z axes are the same, such as for 
D 4 3 C 4  and D 4 3 D z 3 C 2 ,  a rotation is needed unless the orientation phases are 
chosen appropriately. 

For rotation-reflection groups the situation is complicated by the existence of a 
sign choice for the pseudoscalar transformation coefficients. This sign choice is another 
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choice of relative orientation of the two schemes, in addition to the choice of even- 
parity primitive transformation coefficients (see § 3) ,  and has the effect of inversion. 

Consider the following example. The phase choices of Butler (1981) are such that 
we can transform between the schemes D4 3 C4 and D4 3 D2 3 C2 with unity primitive 
transformation coefficients and therefore, by isomorphism, between DZd 2 S4 and 
D2d 3 Czv 2 C2. However, since the transformation coefficient 

( ~ ( ~ z ~ ) ~ ( ~ ~ ) ~ ~ ( ~ ~ ~ ) ~ ( C ~ , > ~ ( ~ Z ) )  - 1  (7 .1)  
care must be taken if the chains D4h3D2d3S4 and D4h3D2d3C2v3C2 are con- 
sidered. The transformation between these schemes contains the even-parity 
coefficient (identical to (7 .1) )  

(2'(D~h)2(Dzd)2(s4)~2+(D4~)2(D2d)Oo0(~z)) = - 1 (7 .2)  

(0-22(0-200) = *l. (7 .3)  

and the pseudoscalar 

The pseudoscalar coefficient is real because of the 2jm choices. If it is chosen to be 
+ 1 then application of the Racah factorisation lemma gives an apparent contradiction 
because if we attempt to factorise out the D4h 2 DZd transformation factors we obtain 
two different signs for (2(D2d)2(S4)/2(D2d)O(C2v)O(C2)), one for each of equations (7 .2)  
and (7 .3) .  This shows that the two DZd groups are not identical, even though both 
have axes and mirror planes in the same places. 

If we desire factorisation we have several options. The 3jm choices can be changed 
to reverse the sign in equation (7 .2) .  Another option is to rotate by 1r/2 about z,  
which is accomplished by a suitable choice of the primitive coefficients (i.e. those 
transforming as 3' (D4h)). This rotation has no effect on the pseudoscalar (equation 
(7 .3)) ,  but changes equation (7 .2)  to 

(2+22/2+200) = + l .  (7 .4)  
Finally, we can obtain factorisation by changing the sign of the pseudoscalar transfor- 
mation coefficient. This changes the sign of all odd-parity transformation coefficients 
and is equivalent to an inversion. Note that all of these changes result in DZd groups 
with axes and mirror planes in the same place. 

8. Conclusions 

The building up method brings to the fore the question of the number and meaning 
of the free phases in the Racah-Wigner algebra. All continuous phase freedoms are 
easily understood in terms of Schur's lemmas. All 6j choices relate triads to basis 
triads and most 3jm choices relate kets to the primitive ket, and neither type has 
an effect on orientation. Sometimes a continuous phase freedom in the 3jm arises, 
which links basis triads in group and subgroup, and this affects the orientation. Double 
root orientation choices are not a result of Schur's lemmas. 

In our first paper we pointed out the existence of orientation phases and gave 
some examples. Here we have extended the work to all point groups and some 
continuous groups, and pointed out that we cannot predict the existence of orientation 
choices for other groups without detailed study of the 3jm factors. We have also 
observed that identical orientation of the symmetry axes and mirror planes of the 
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group schemes does not guarantee that the groups are identical. Identical groups are 
required for applications of Schur’s lemma, such as the Wigner-Eckart theorem or 
the Racah factorisation lemma. 

It may appear that our rather lengthy discussion of axes and bases has removed 
the main advantage of the building up method-that one only needs character theory 
results in order to calculate 3jm and 6j. This is not the case. The calculations are 
still done using only the equations which arise from the Racah-Wigner algebra and 
this discussion demonstrates that while the orientation structure of point group chains 
is subtle we can always deduce the information that is necessary for a particular 
application directly from the tables of 3jm factors. 

However, many applications require no basis information. For example the multi- 
quark hadron dissociation calculations of Bickerstaff and Wybourne (198 1) require 
only a consistent set of 3jm and 6j. Other calculations may require information such 
as the transformation properties of various orientations of an electric or magnetic 
field, that is, only bases for 1*(03). We have shown how these properties may be 
deduced. 
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